Laser Beacon Spot Elongation and pulse format

Jerry Nelson
2004 November 13
CfAO retreat
Contents

• Characteristics of Na layer
• Spot geometry
• Elongation
• Elongation effects
• Possible solutions
• Pulsed lasers
• Custom CCD’s
• Key issues
Characteristics of Na layer

- **Height**
 - Average height is about 90 km
 - Height is variable, but in the range 85-95 km

- **Thickness**
 - Average thickness is about 10 km (equivalent width, not σ)
 - Thickness is quite variable in time 5-20 km
 - Density is non uniform (see pictures)

- **Column density**
 - Density averages 3×10^9 Na atoms/cm2
 - Density range is about $1 - 5 \times 10^9$ atoms/cm2
Pictures courtesy of Jonathan Friedman, jonathan@naic.edu, Craig Tepley, craig@naic.edu, Shikha Raizada, shikha@naic.edu, Arecibo
Geometry

Na layer

h

z

θ

subaperture

laser

s

ground

2004 Nov 12

spot elongation and pulsed lasers
The Elongation problem

• The luminous column through the Na layer appears as a circular spot when viewed from the laser launch telescope itself

• When viewed obliquely, the spot appears elongated

• Elongation

\[\theta = \frac{st \cos z}{h^2} \]

• Where

– s separation between laser launch location and subaperture (15 m)
– t is the Na layer thickness (~ 10 km)
– h is the height to the Na layer (~ 90 km)
– z is the zenith angle of the observation (0°)
– \(\theta = 3.82 \) arc seconds
Importance of elongation to atmospheric reconstruction

• Elongated spot means that centroid location in one direction is very poor
 – Reconstructing wavefront will be noisier, particularly for predominantly radial modes
 – Efforts should be made to minimize this effect: put laser behind secondary
 – Will need more laser power to achieve same reconstruction error

• Elongated spots mean that the detector size will need to be larger
 – Must resolve narrow direction: implies ~ 0.2 arcsecond pixels
 – Need enough space for 3-6 arcsecond lengths
 – For ELT might need ~ 30m/30cm ~ 100 subapertures in diameter
 – Size of detector ~ \((100 \times 6 / 0.2)^2 \approx 3000 \times 3000\)
 – Or custom detector: \((2/0.2) \times (6/0.2)/2 \times 100 \times 100 = 1,500,000\)
 (~1024x1024 pixels) and use polar coordinate layout around laser
Possible approaches to resolve this

– 1. Ignore the problem
– 2. Cross correlate the image shape with template (and rely on high spatial frequency structure in the layer/spot to improve resolution)
– 3. High speed images to freeze pulse within the Na layer (produces small, faint spots, need many frames)
– 4. High speed optical focus to give a sharp image for all positions in the Na layer. Focus must track pulse
– 5. High speed special CCD’s to shift the detected charge synchronous with pulse propagation through the layer
 • [methods 3,4,5 need ~ 5μs pulse width (~ 1.5km)]
– 6. Many lasers, each makes its own Na location, each has separate wavefront camera, views sub pupil (~ stitching)
– 7. Generate additional spots from different laser launch telescopes and mathematically combine the centroid information. Use custom shaped CCD to record image
Pulsed laser format

Na layer

h

z

θ

subaperture

ground

s

2004 Nov 12
spot elongation and pulsed lasers
Pulsed lasers

- Need to consider both intrinsic pulse width (w) and detector integration time (Δt)

- Apparent width of spot

\[\theta = (w + \Delta t) \left(\frac{sc}{2h^2} \right) \cos^2 z \]

- For $s=15m$
 - $c=3\times10^8 \text{ m/s}$
 - $h=90\text{ km}$
 - $w+\Delta t=8.7\mu s$
 - $z=0$
- Get $\theta = 0.5 \text{ arcsec}$
Key laser times

- Time to Na layer: $300\mu s \times (h/90\text{km})/\cos z$
- Round trip: $600\mu s \times (h/90\text{km})/\cos z$
- Time through Na: $33\mu s \times (t/10\text{km})/\cos z$
- Pulse separation for single pulse in Na layer: $66\mu s \times (t/10\text{km})/\cos z$
- Max pulse frequency: $15\text{Khz} \times (10\text{km}/t) \times \cos z$
- Pulse duration + integration time: $< 8.7\mu s \times (\text{blur}/0.5\text{ arcsec})/(s/15\text{m})/\cos^2 z$
Custom CCD’s

- It appears practical to make custom CCD’s
 - Spot to spot separation is independent of the Na layer source on the CCD (set by lenslets on pupil)
 - Each lenslet image is sampled by “local” CCD. Example of a 4x4 pixel array covering each lenslet on the pupil is shown
 - Each array is custom to the direction and distance to the launch telescope
 - Beletic funded by the AODP Program to develop these CCD’s
Key Issues

- **How bad is the problem - what's the impact on wavefront error**
 - See Ellerbroek talk

- **How dense must we sample the SH spot (can't use quad cell)**
 - Poyneer talk?

- **How hard is it to make narrow pulse lasers**
 - < 5 μs pulse width (small broadening)
 - ~ 5-15 kHz pulse rate (only 1 pulse in Na layer)
 - See Pennington talk

- **How do we deal with laser fratricide (Rayleigh vs Na)**

- **How hard are custom shaped CCD's**
 - See Beletic talk