10. Strategies for High Resolution Retinal Imaging
 Austin Roorda, Remy Tumbar, Julian Christou

10.1.1. Conventional Imaging (Roorda)
 10.1.1.1. Basic principles
 This will be a simple optical imaging system
 10.1.1.2. Basic system design
 Show a typical AO flood-illuminated imaging system for the eye
 10.1.1.3. Choice of optical components
 Discuss the type of optical you would use (eg off axis parabolas)
 10.1.1.4. Choice of light source
 How much energy, what bandwidth, flash duration, show typical examples
 10.1.1.5. Controlling the field size
 Where to place a field stop and why
 10.1.1.6. Choice of camera
 What grade of camera is required? Show properties of typical cameras that are currently used
 10.1.1.7. Implementation of wavefront sensing
 Where do you place the wavefront sensor. Using different wavelengths for wfs.

10.1.2. Scanning Laser Imaging (Roorda)
 10.1.2.1.1. Basic principles
 This will show how a simple scanning imaging system operates
 10.1.2.1.2. Basic system design
 This shows the layout of a simple AOSLO
 10.1.2.1.3. Choice of optical components
 What type of optical components should you use and why (eg mirrors vs lenses). Where do you want to place the components (eg raster scanning, DM etc) and why.
 10.1.2.1.4. Choice of light source
 How to implement different wavelengths. How to control retinal light exposure
 10.1.2.1.5. Controlling the field size
 Optical methods to increase field size
 Mechanical (scanning mirror) methods to increase field size
 10.1.2.1.6. Controlling light delivery
 Acousto-optical control of the light source for various applications
 10.1.2.1.7. Choice of detector
 PMT vs APD what are the design considerations
 10.1.2.1.8. Choice of frame grabbing and image acquisition hardware
 What are the requirements for a frame grabber. What problems can you expect.
 10.1.2.1.9. Implementation of wavefront sensing
 Strategies for wavefront sensing in an AOSLO
 10.1.2.1.10. Other: pupil tracking, retinal tracking, image warping

10.1.3. OCT Systems (Tumbar)
10.1.4. Future Ideas (Tumbar)
10.1.5. Survey of post-processing/image enhancement strategies (Christou)