Wavefront Correction Technologies

Scot S. Olivier
Adaptive Optics Group Leader
Physics and Advanced Technologies
Lawrence Livermore National Laboratory

Associate Director
NSF Center for Adaptive Optics

August 7, 2003
Adaptive optics control wavefront phase to compensate for optical aberrations.
Outline of Presentation

- Conventional wavefront correction technologies
- Limitations of conventional adaptive optics
- Spatial light modulator technology
 - Liquid crystals
 - Micro-electro-mechanical systems (MEMS)
Deformable Mirror Technology

Xinetics Deformable Mirrors

New photonics modules under development at Xinetics

Bimorph deformable mirrors developed by CILAS, et al.

LLNL Deformable Mirror

U. Chicago Deformable Mirror
Bimorph Deformable Mirror Technology

Bimorph mirror electrode sketch

AAT bimorph mirror

Bimorph deformable mirrors developed by CILAS, et al.

CFHT AO Bonnette
Deformable Mirror

Rear View
349 Actuators on 7 mm spacing

Front View
146 mm diameter clear aperture
Large Deformable Mirror Technology

LLNL National Ignition Facility
Deformable Mirror

University of Arizona Deformable
Secondary Reference Body
Adaptive optics are a key enabling technology for LLNL projects in laser beam control and imaging.

Wavefront control capabilities are crucial for many LLNL projects involving high power lasers.

- NIF requires AO on all 192 beams
- SSHC laser requires intra-cavity AO

LLNL-built sodium-layer laser guide star AO system at Lick Observatory is world’s first.

LLNL-built AO system at Keck Observatory is world’s most powerful.
A major science thrust with NIF is connected to the future development of a short-pulse capability.

Current NIF deformable mirror with ~40 actuators corrects for aberrations at low resolution.

Previous experience with short-pulse capability on NOVA (“Petawatt Laser”) revealed need to control beam at high resolution.

Petawatt beam profile showed high resolution fluctuations - resulting in 3x decrease in power density.

The short-pulse-based science program on NIF will benefit from new, high-resolution, affordable deformable mirror technology.
Center for Adaptive Optics
An NSF Science & Technology Center

• Headquarters at UC Santa Cruz
• 11 university nodes
 - 3 primarily vision science
 (Rochester, Houston, Indiana)
• ~25 participating institutions
 (research, edu., gov., industry)

• Combines research and development in three main areas:

VISION SCIENCE
- Without AO
- With AO

Images of single cells in the living human retina

ASTRONOMY
- Visual acuity and retinal imaging degraded by aberrations in cornea and lens

ADVANCED TECHNOLOGY
- Effect of AO aberration correction on the image quality of the 20/20 E
The Center for Adaptive Optics has two main science themes in astronomy

Extremely high resolution adaptive optics to enable observations of the origins of planetary systems

Adaptive optics for extremely large telescopes to enable observations of the origins of the universe

Development of adaptive optics systems for these applications requires new, high-resolution, affordable wavefront corrector technology.
Adaptive optics can provide a unique diagnostic capability for effects of vision correction and for high resolution retinal imaging.

Visual acuity is degraded by aberrations in the cornea and lens. Adaptive optics correct for these aberrations.

Effect of AO aberration correction on the image quality of the 20/20 E.

An adaptive optics system can be used to sense and correct aberrations in a subject’s eye, enabling detailed studies of visual performance and retinal structure under a variety of conditions.

Visual acuity is degraded by aberrations in the cornea and lens. Adaptive optics correct for these aberrations.

Images of single cells in the living human retina.
CfAO has catalyzed a national effort to use new AO technologies to develop prototype high-resolution clinical ophthalmic imaging systems. These systems will aid in the diagnosis and treatment of diseases causing blindness and the development of new techniques for vision correction in the general population.

Development of viable clinical ophthalmic adaptive optics instrumentation requires continued enhancement of enabling wavefront corrector technologies that are: compact, robust and inexpensive.

- Greater range of motion
- Lower drive voltages
- Integrated drive electronics
New wavefront control devices provide dramatically increased capabilities at lower cost.
High-resolution wavefront control with optically addressed liquid crystal spatial light modulators

Optically addressed nematic liquid crystal spatial light modulators

HAMAMATSU LC SLM
640 × 480 pixels
30 ms response time

JENOPTIK LC SLM
832 × 624 pixels
30 ms response time
The anatomy of an optically addressed liquid crystal spatial light modulator
Spatial Light Modulator Technology

- **Liquid crystal spatial light modulators**
 - Advantage: Capable of high spatial frequency correction
 Commercially available today
 Compact size
 - Disadvantage: Slow, limited stroke, polarization and temperature sensitivity

- **Micro-electro-mechanical spatial light modulators**
 - Advantage: Capable of high frequency corrections (x, t),
 Light weight, lower cost (batch fabrication),
 Compact size, integration of addressing electronics
 - Disadvantage: *Limited commercial availability with specifications needed for adaptive optics*
Original CfAO Plan, from January, 2000

- Two primary parallel paths based on AFRL and BU device designs
- Third path at BSAC investigating new designs for higher stroke actuators

- Phase 1: 256 elements
- Phase 2: 1024 elements
- Phase 3: 4096 elements
OKO Technologies micromachined membrane deformable mirror system